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of time. The authors, however, set i; equal to
a time function in (10) and claim that i; and
i3 are time functions in their rebuttal.
Whether the curves presented by Perlow
and Perlman fit measurements taken on a par-
ticular upconverter are not at issue here, only
the correctness and validity of the derivations.

S. M. Perlow and B. S. Perlman®

As we have previously stated, (10) repre-
sents the transfer characteristic of the up-
converter. As such, it is treated as any other
nonlinear characteristic would be. Grayzel
believes this to be mathematically inconsistent
and leads to incorrect results. It will now be
shown that two tones applied to the input may
indeed be analyzed in such a manner.

When a two-tone test is used to measure
intermodulation distortion, two signals of
frequencies f, and f; are applied to the input.
The output contains responses at every sum
and difference frequency. The frequen-
cies of interest for intermodulation distortion
specifications are those corresponding to
(m+1)f;—mfy and (m+1)fi—mf,. This was
the notation used in the paper. Equation (10)
was expanded in a series and i, was re-
placed by cos w¢ and then later on by
€08 wqt+cos wyt, expanded to all odd powers.
The validity of this series may be seen quite
easily by considering a different means of gen-
erating the two tones.

Let the two-tone input signals be sepa-
rated in frequency by 2w.. Therefore

wo = w1 + we
wWp = W] — We

and (22) becomes:

Goignal = | 7| (cOS wal + cOS wit)
l ll [COS (01 + welt

+ cos (w1 — we)t]

= 2|1 cos wd cos wit.

I

That is, the two original tones may be re-
placed by a single DSBSC tone. The magni-
tude of the input signal is no longer a con-
stant but now becomes 2[i] cos w.f, where
weXKw,. Equation (13) may now be written as

13 = Aol’il [t — |A1i1 [%s + | Ayiy [%5
—[A1’i1!6@7+" -]
where

11 = Cos we.

The intermodulation frequencies corre-
sponding to (m+1)f—mf, and (m+1)fs—mfs
now become fi+(2m+1)f,. Note that the
intermodulation frequencies are harmonically
related to the difference in frequency between
we and wp.

The second term of the above expansion
gives rise to the desired output plus a contri-
bution to the first intermodulation distortion
product term of the form K cos (ws--3we)t, or
if w, and w, are used, K cos (2wqs—ws)t. The
coefficients of this expansion are exactly the
same as the coefficients of the expansion in
the paper, and the intermodulation frequen-

4 Manuscript received June 22, 1966.

cies are the same. The equality of the two ex-
pansions is thus proven.

This approach, although slightly more
complicated conceptually, is mathematically
rigorous. It takes into account all of Grayzel’s
objections of mathematical inconsistencies
and leads to the same expansion found in (21)
and (22) of the paper, thereby showing the
correctness and validity of the results.

On Changing the Coupling into a
Microwave Cavity by Means
of a Stub Tuner

In microwave measurements involving a
resonant cavity it is sometimes desirable to be
able to make a continuous adjustment of the
coupling coefficient, defined as!

_ Qo
Qext

Variation of Q, by adjustment of the spatial
distribution of loss within the cavity and vari-
ation of Q.x; by mechanical adjustment of the
coupling loop or aperture are both often im-
practical, particularly in situations where it is
difficult to gain access to the cavity while data
are being taken. However, one can also vary
the coupling coefficient by inserting a shunt
susceptance (stub tuner) into the feeder line,
at some distance away from the cavity. The
problem of calculating the magnitude and
location of this susceptance differs somewhat
from the standard fixed-frequency or narrow-
band matching problem,? because the imped-
ance being “matched” has a strong and char-
acteristic frequency dependence. The purpose
of this correspondence is to consider this de-
sign problem.

By attaching the shunt susceptance, one
forms in effect a new composite resonant sys-
tem (Fig. 1), consisting of the shunt suscep-
tance added to the cavity admittance, with the
latter transformed by the line segment be-
tween the detuned-short (DS) position and the
position of the shunt susceptance. The DS
position serves as a convenient reference loca-
tion because the equivalent representation of
the cavity assumes the simple shunt form of
Fig. 1 only when viewed from there. The Q of
this composite system can in principle be cal-
culated analytically from the known compos-
ite admittance function,® but a much simpler
approach can be made by using the Smith
chart.
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Fig. 1. Composite resonator formed by adding a shunt

susceptance in the cavity feeder line.

On a Smith chart a plot of the cavity im-
pedance, observed at the DS position over a
frequency range near resonance, will result in
a circle through the point R/Z;=0. The nu-
merical value of 8 can then be read directly
from this characteristic as the normalized re-
sistance offered by the cavity at resonance.
The diameter of the impedance diagram is
thus directly related to the magnitude of the
coupling coefficient 5. Actually, for the pur-
poses of this discussion, the cavity admittance
circle (as seen at the DS position) is of greater
interest; it is obtained by reflecting the im-
pedance circle through the center of the Smith
chart.

In using the Smith chart to describe the
behavior of the composite system one as-
sumes, first, that the shunt susceptance is es-
sentially constant with frequency over the
entire cavity bandwidth. This assumption is
quite realistic, provided the magnitude of the
shunt susceptance is kept reasonably small
(B/Y,<1). Second, the transmission line seg-
ment between shunt susceptance and cavity
must not have a large standing-wave field and
it must be reasonably short, so that one can
assume the amount of energy stored there to
be negligible compared to the energy stored in
the cavity., This assumption also is satisfied
only for small values of shunt susceptance. As
the latter is increased, the Q, of the composite
system will deviate more and more from the
true Qo of the cavity.

We will now consider the behavior of the
composite system. If a shunt susceptance is
added at a position which is an integral num-
ber of half-wavelengths away from the DS
(I=(n/2)\g), the cavity will simply be detuned,
since one is then adding a reactive element in
parallel to the equivalent resonant circuit. The
size of the admittance circle remains invari-
ant in this case, and there is no resultant
change in the coupling coefficient. If, on the
other hand, a shunt susceptance (+jB) is
added at DS +1),, then the size of the circle
must always decrease. This can be seen in
Fig. 2, which shows the admittance circle y;
rotated through %, to position y,, where the
shunt susceptance is then added. For example,
if B/Yo=+30, the composite admittance
circle then appears at ys;, and it is much
smaller than y;. Finally, from Fig, 2 it is clear
that with the shunt susceptance placed near
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Fig. 2. Modification of Smith-chart admittance diagram by addition of shunt susceptance j(B/ Yo) =j3.0 at DS + i\,

DS =+ §A,, the size of the circle, and hence the
coupling coefficient, can be either increased
or decreased, depending on the sign of the
susceptance being added. The magnitude of
the desired susceptance is easily obtained by
fitting an admittance circle of the desired size
between the appropriate constant-conduc-
tance contours, such as the dashed lines con-
necting y; and y; in Fig. 2, and observing the
difference, in terms of susceptance, between
the shifted admittance circle y, and the desired
admittance circle ys.

EXPERIMENTAL RESULTS AND CONCLUSION

The experimental cavity consisted of a
three-inch section of ring-bar slow-wave struc-
ture that was mounted between transverse
shorting planes,* and that possessed a longi-
tudinal resonance at 1090 MHz. Coupling was
achieved by direct connection of the center
conductor from a BNC terminal to a ring
near one end of the cavity.

In order to modify the coupling to this
resonant mode a single stub tuner (modified
Weinschel DS 109L) was used to pro-
duce jB/Y,=j1.0 at a position DS+0.89,
“towards load,” i.e., the tuner was placed be-
tween the cavity and the DS position. Phys-
ically, the tuner was located within less than
%\, from the cavity terminal. The results are
summarized in Table I.

It is seen that by attaching the stub tuner,

4 B. Kulke, “An extended-interaction klystron: effi-
ciency and bandwidth,” Microwave Lab., Stanford
University, Stanford, Calif., M.L. Rept. 1320, ch. 4,
May 1965.

TABLE 1
‘With stub tuner
Quantity | Without stub tuner set to give

JjB/Ye=;1.0
Qo 111 920
Qext: 53 22
or, 36 18

B 2.1 4.1 measured

5.5 predicted

Q¢ is decreased by a factor of two. The “pre-
dicted” 8=5.5 was obtained by graphically
adding the shunt susceptance (assumed con-
stant) to the rotated admittance circle, as
was explained. This compared with a mea-
sured g=4.1, with the stub tuner attached.
Since both this discrepancy and the change in
Qo are somewhat greater than might be ex-
pected from measurement error, one suspects
that in this case the energy stored and dissi-
pated outside the cavity was not negligible. In
subsequent measurements the setting of the
stub tuner was varied to produce a wide range
of values for Qux:, but no further significant
change was observed in Qo (Qext=49, 70, 87,
125 with Q,=88, 86, 87, 92). The apparent
change in Q, that occurred when the stub
tuner was first inserted into the feeder line,
was, therefore, probably due to residual reflec-
tions from the tuner or its type N connectors,
rather than to excessive tuner susceptance as
one would at first expect. Clearly, the method
does afford a quick and simple way of chang-
ing the cavity loading, provided that the shunt
susceptance (including residual refiections) is
limited to reasonably small values.
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List OF SYMBOLS

B coupling coefficient.
Qo, Qext, Q1 internal, external, and loaded

DS detuned-short.
Zy, Yo characteristic impedance, ad-
mittance of feeder line.
B shunt susceptance.
[ distance between
shunt susceptance.
A, guide wavelength in feeder
line.
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DS and

The Point-Matching Method for
Interior and Exterior Two-Dimen-
sional Boundary Value Problems

There have appeared recently some papers
[11-[4] on a “point-matching method” for
solving electromagnetic boundary value prob-
lems. The only attempts at justifying its use
have been qualitative, but the method is
plausible, and in some instances gives accurate
results. Nevertheless, the method is unsound,
in general, as has been pointed out by Har-
rington [5]. It will be demonstrated, however,
that when certain symmetries are maintained,
the point-matching method is valid. These
symmetries are maintained, or nearly main-
tained, in the majority of test cases used for
“demonstrating” the validity of the method,
which explains its apparent success.! Yee [6]
and Laura [7], [8] describe the background of
the method and the motivation for its use.

A single type of electromagnetic boundary
value problem will be considered: an infinite,
perfectly conducting, cylindrical boundary of
arbitrary cross section with the (monochro-
matic) electric field parallel to the axis of the
cylindrical boundary. This type of problem is
adequate both for explaining the successes of
the point-matching method in special cases
and for displaying its inadequacy in general.
Figure 1 shows an infinite cylindrical bound-
ary C, supposed perfectly conducting, de-
scribed by the cylindrical polar coordinates r
and 9. The point P at which the field is ob-
served is described by the cylindrical polar co-
ordinates p and ¢. The electric field is con-
strained to be perpendicular to the paper so
that the fields are most conveniently repre-
sented by the component of the vector poten-

Manuscript received July 5, 1966; revised October 3,
1966.

11t is interesting that these symmetries are main-
tained in all of the actual calculations quoted by Yee and
Audeh [13] in a recent paper.



